

Paper good practice – Sensors

ARVOR-PROVOR technical Workshop, Brest, 28.–30. Jan. 2020

< Articles

THIS ARTICLE IS PART OF THE RESEARCH TOPIC Best Practices in Ocean Observing View all 15 Articles >

REVIEW ARTICLE

Front. Mar. Sci., 22 August 2019 | https://doi.org/10.3389/fmars.2019.00502

A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage

Henry C. Bittig^{1,2*}, Tanya L. Maurer³, Joshua N. Plant³, Catherine Schmechtig⁴, Annie P. S. Wong⁵, Hervé Claustre², Thomas W. Trull⁶, T. V. S. Udaya Bhaskar⁷, Emmanuel Boss⁸, Giorgio Dall'Olmo⁹, Emanuele Organelli², Antoine Poteau², Kenneth S. Johnson³, Craig Hanstein⁶, Edouard Leymarie², Serge Le Reste¹⁰, Stephen C. Riser⁵, A. Rick Rupan⁵, Vincent Taillandier², Kiaogang Xing¹¹

1. Program conception

- What float platform and which sensors?
- What kind of mission?
 - Argo standard or with modifications (for good enough reasons?)
- Who takes care of data flow / in contact with a DAC?
- Who takes care of DMQC?

2. Float handling

- Pre-deployment float testing as a good practice
- Float operations (storage, deployment, mission changes, recovery)

3. Data flow, management, and quality control

- How is BGC-Argo nestled into the Argo data system?
- What data streams and files exist? What's their latency and target user group?
- What's the data flow for quality controlled (QC'ed) data?

4. Data usage

- How and where to find BGC-Argo data?
- How to access the data one is looking for?
- How to interpret the QC state (data mode and QC flags)?

Variable-specific aspects

- What is special about each of the 6 core BGC-Argo variables?

FIGURE 1 | Key points and questions of a "BGC-Argo float life", from conception, float operations, data management and quality control to data usage.

1. Sensor Handling

2. Data Handling

What Sensors?

O₂ Optodes

• AADI 4330, SBE63, ARO FT, RBR?

F(Chla) FluorometersECO, MCOMS

NO₃ UV-vis Spectrophotometers

• ISUS, deep SUNA, OPUS?

pH ISFET sensors

• deep-sea DuraFET, deep SeaFET

Backscatterometers / TurbitometersECO, MCOMS

Radiometers

• OCR, ?

Float Time CTDs • SBE41, RBR

Pre-Deployment Float Preparation

Includes Sensors:

- Sanity Checks on Sensor Data by "Quick Tests", e.g.,
 - Check Nitrate using clean water. (Reading should be ~Zero.)
 - Check response of F(Chl a) / backscatter to fluorescent / scattering material
 - Check response of radiometer to skylight / shade
 - Check O₂ Optode response to air (not too far from saturation at given T and S=0) and exhale on it (O₂ should go down)
- Sensor Maintenance / Cleaning
 - Optics: Clean windows, put on protective caps
 - O₂ Optode: Do not rinse or clean optode with organic solvents, put on protective cap
 - ISFET pH: Keep in salt water, do not rinse with freshwater
 - SBE41 CTD, ISFET pH: Do not let water freeze inside...

Pre-Deployment Float Preparation

Includes Sensors:

- Are sensor data strings correct or corrupted? Possible sensor misconfiguration?
- Always transmit raw data (if possible). Processing power of the data system will always be better than of the float/sensor !
- Record all sensor configurations, calibration sheets, serial numbers, etc. *before* throwing the float overboard.
- *Make sure* to record all sensor configurations, calibration sheets, serial numbers, etc. before throwing the float overboard!
- Make a copy of it.

Deployment

! Don't forget to take off protective caps before throwing the float overboard !

No urgent need for reference samples – but always good for data validation!

- O₂: Float with in air sequence and multipoint calibrated optode
- NO₃: Regression methods (CANYON-B, LINR, ...) work as good in most areas.
- ISFET pH: Strong initial conditioning period of sensor.
- Chl a: HPLC samples of science interest, but calibrations very consistent
- b_{bp} : POC samples of science interest, but calibrations very consistent
- Radiometry: good for science interest, but calibrations very consistent

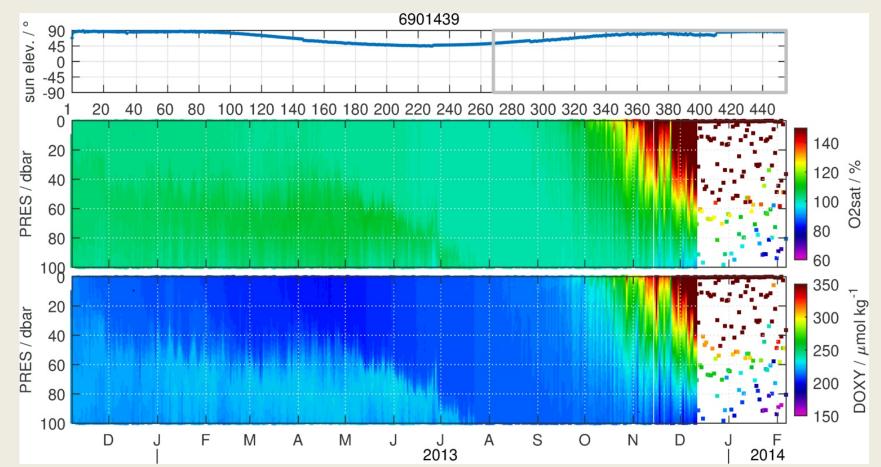
During Deployment: Mission Requirements and Modifications

BGC-Argo requirement: contribute to the core-Argo mission, i.e.

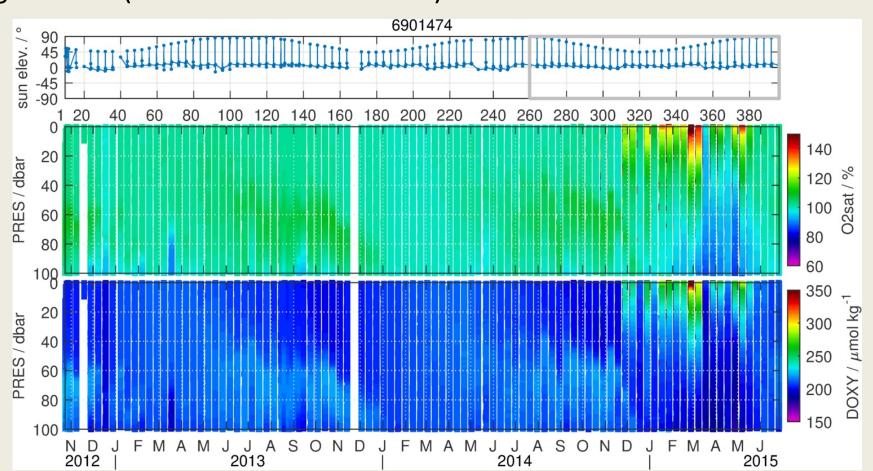
• profile to 2000 m at least 1-3x per month

O₂ Optodes

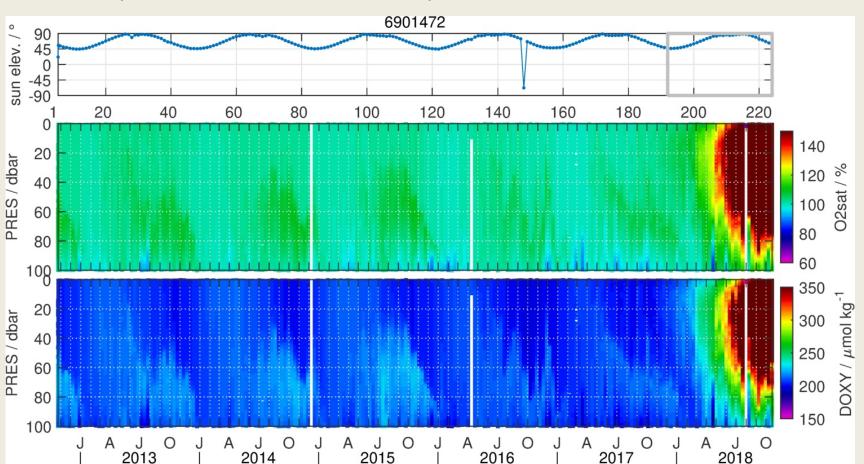
- Need surface in-air measurements. (Request it from manufacturer!)
- At least 3x per month

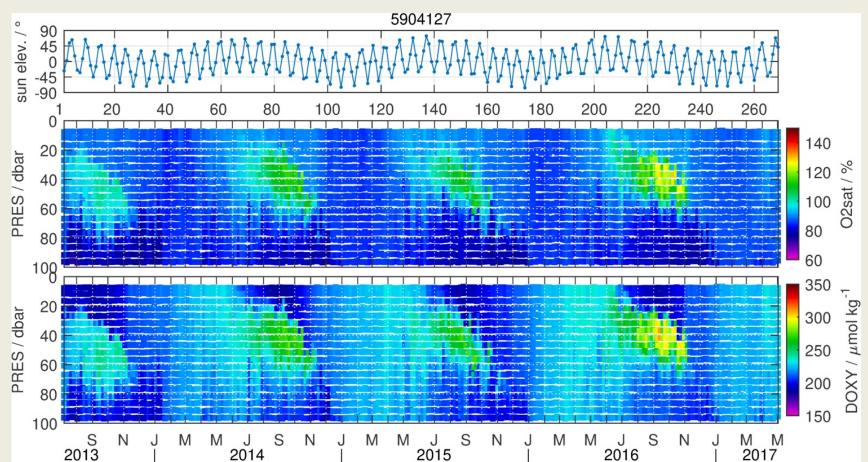

NO_3 and pH

• Ensure deep enough profiles for sensor drift correction on "stable" water mass.


F(Chl a), b_{bp}, Radiometry

- Perform one deep profile at night once per year when there is the strongest temperature gradient (end of summer).
- High resolution (1 m) F(Chl a), b_{bp} data beneficial for particle dynamics in upper 100's of meters


- Avoid daily surfacing at noon (in warm surface waters)!
- daily during noon; warm surface


- Avoid daily surfacing at noon (in warm surface waters)!
- daily during noon; warm surface
- 4 rapid cycles at 10 d interval; warm surface

- Avoid daily surfacing at noon (in warm surface waters)!
- daily during noon; warm surface
- 4 rapid cycles at 10 d interval; warm surface
- 10 d during noon; warm surface

- Avoid daily surfacing at noon (in warm surface waters)!
- daily during noon; warm surface
- 4 rapid cycles at 10 d interval; warm surface
- 10 d during noon; warm surface
- 5 d interval; cold surface

Data Processing and Data Use

TABLE 6 Overview about BGC-Argo documentation for the 6 core BGC variables.

Parameter	Processing at DAC level	RT and DM quality control
Oxygen	Thierry et al., 2018a (doi: 10.13155/39795)	Thierry et al., 2018b (doi: 10.13155/46542)
Nitrate	Johnson et al., 2018a (doi: 10.13155/46121)	In preparation
рН	Johnson et al., 2018b (doi: 10.13155/57195)	Johnson et al., 2018b (doi: 10.13155/57195)
Chlorophyll a	Schmechtig et al., 2015 (doi: 10.13155/39468)	Schmechtig et al., 2018a (doi: 10.13155/35385)
Particle backscattering	Schmechtig et al., 2018b (doi: 10.13155/39459)	In preparation
Radiometry	Schmechtig et al., 2017 (doi: 10.13155/51541)	In preparation

Advanced Processing:

 O₂ time response correction requires time stamps...
 Required from float firmware!

Data Use:

 Don't even bother to use raw, unadjusted O₂, NO₃, pH data for science. (Ok for diagnostics.)

Header BGC-Argo QC manual: Schmechtig et al., 2016 (doi: 10.13155/40879).

Stage & level	Question to answer	Source for relevant information	
Stage I: Data discovery on network level	What location, time, parameters, parameter data modes?	GDAC index files, others e.g., ftp://usgodae.org/pub/outgoing/argo/argo_bio-profile_index.txt	
	Identification of relevant files	e.g., ftp://usgodae.org/pub/outgoing/argo/ aoml/5904104/profiles/BD5904104_004.nc coriolis/6901485/profiles/BR6901485_049.nc csiro/1901348/profiles/BD1901348_008.nc <dac>/<wmo>/profiles/B<mode><wmo>_<cyclenumber>.nc</cyclenumber></wmo></mode></wmo></dac>	
Stage II: Data access on individual file level	(A) What parameters are in file?	PARAMETER field	
	 (B) What's their processing state? (real-time, real-time adjusted, or delayed-mode adjusted) 	PARAMETER_DATA_MODE field 'R', 'A', or 'D'	
'R' 'Or 'D'		or 'D'	
(C) Use data in <param/> field a QC flags in <param/> _QC	QC flags in <	(C) Use data in <param/> _ADJUSTED field, QC flags in <param/> _ADJUSTED_QC, and uncertainty in <param/> _ADJUSTED_ERROR	
<param/> = Parameter name, e.g., DO	XY, CHLA, BBP700, NITRATE,	US GDAC: ftp://usgodae.org/pub/outgoing/argo/ French GDAC: ftp://ftp.ifremer.fr/ifremer/argo/ <dac> = Data centre responsible for the float <wmo> = WMO ID of the float <mode> = 'R' or 'D'</mode></wmo></dac>	

<cyclenumber> = cycle number

